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Abstract

In this paper, we obtain a necessary and sufficient condition for the incompleteness of
complex exponential polynomials in C,, where C, is a weighted Banach space of complex
continuous functions f on the real axis R with f(¢) exp(—a(¢)) vanishing at infinity, in the
uniform norm with respect to the weight a(¢). We also prove that, if the above condition of
incompleteness holds, then each function in the closure of complex exponential polynomials
can be extended to an entire function represented by a Dirichlet series.
© 2003 Published by Elsevier Inc.
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1. Introduction

In the study of weighted approximation on the real line R, we start with a
nonnegative continuous function o(¢), henceforth called a weight, defined on R. We
usually suppose that

lim ¢ a(r) = 0. (1)

[t] > o0
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Given a weight o(7), we take a weighted Banach space C, consisting of complex
continuous functions f(¢) defined on R with f(z) exp(—a(¢)) vanishing at infinity,
and write

1711, = sup{lf (e~ : re R}

for feC,. Denote by M(A) the set of complex exponential polynomials
which are finite linear combinations of the exponential system {e*:leA},
where A={2,:n=1,2,...} is a sequence of complex numbers in the open
right half-plane C, = {z=x+iy:x>0}. Our condition (1) guarantees that
M(A) is a subspace of C,, we then ask whether M(A) is incomplete [6] in C, in
the norm || ||,—this is the so-called weighted exponential polynomial approxima-
tion, which is similar to the classical Bernstein problem on weighted polynomial
approximation [3].

Motivated by Bernstein’s problem and Malliavin’s Method [3], we find a
necessary and sufficient condition for M(A) to be incomplete in C,. Inspired
by Borwein’s and Erdélyi’s results [2, p. 311], we also prove that, if the
above condition of incompleteness holds, then the closure of M(A) in C, is
the set of all feC, which can be extended to an entire function represented by a
Dirichlet series.

Our main conclusions are as follows:

Theorem 1. Let o(t) be a nonnegative convex function on R satisfying (1).
Let A= {l, =l :n=1,2,...} be a sequence of complex numbers in C,
satisfying

®(A)=sup{|0n|:n:1,2,...}<g 2)
and
O(A) = inf{|Zpp1| — [4| :n=1,2,...}>0. (3)
Then M(A) is incomplete in C, if and only if there exists ae R such that
TP a(A(r) —a)
/l Wdl‘< o0, (4)
where
2y S0
= |11,
Ar)y =3 pa<r |l -
0 otherwise.

Theorem 2. Let o(x) be a nonnegative convex function on R satisfying (1). Let A be a
sequence of complex numbers in C. satisfying (2) and (3). Suppose that A(r) is
unbounded on (0, 00 ), where A(r) is defined by (5). If M(A) is incomplete in C,, then
each function f in the closure of M(A) can be extended to an entire function ¢(z)
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represented by a Dirichlet series

g(z) = Z ae'. (6)
n=1

Remark 1. The case ©®(A)=0 and 6(A)>0 in Theorem 1 is obtained by
Malliavin [4].

Borwein and Erdélyi [2] have proved a similar result to Theorem 2 for the closure
of Mimtz polynomials on a finite interval when ®(A) =0, 6(A)>0 and A(r)
is bounded on (0, c0). Thus Theorem 2 is a further generalization of some results
in [2].

2. Proof of theorems
In order to prove Theorems 1 and 2, we need the following technical lemmas.

Lemma 1 (Malliavin [4]). Let () be a nonnegative convex function on R satisfying
(1), and assume that

B (1) =sup{xt — B(x): xeR}, teR (7)
is the Young transform [6] of the function [(x). Suppose that A(r) is an increasing
Sunction on [0, o0) satisfying

AMR) — A(r)<A(logR —logr+1) (R>r>1). (8)
Then there exists an analytic function f(z)#0 in C,. satisfying

f (D)< Aexp{dx+ p(x) — xi(lz])}, z=x+iyeCy, ©)
if and only if there exists ae R such that

B ()~ a)

1 e dt< 0. (10)

Remark 2. Lemma 1 is a result of Malliavin’s uniqueness theorem [4] about
Watson’s problem. (Hereafter, we denote a positive constant by A, not necessarily
the same at each occurrence.)

Lemma 2. If A is a sequence of complex numbers in C, satisfying (2) and (3), then the
Sfunction

(1% z oz
G(z) = Ll Z 4. 11
) H<1 +;i> exp (An + z,) (1)
is analytic in the closed right half-plane C, = {z = x + iy : x>0}, and satisfies the
following inequalities:

|G(z)| <exp{xA(r) + Ax}, zeC., (12)
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|G(z)| =exp{xA(r) — Ax}, zeC(A,dy), (13)

|G’ (4n)| =exp{Re 2,A(|Au|) — ARe 4.}, n=1,2, ..., (14)
where r = |z|,450 = 0(A) and C(A,dy) = {zeCy |z — y|=00, n=1,2, ... }.
Proof of Lemma 2. We will use a similar method to that of the proof of Fuch’s
lemma in [1]. Let
z— Ay 2
z+ Z”

4
_y o Adhleosty gy,
|Z+;“n|2

0, 1
€S | ~loge,(z),

en(z) = 2

where x = rcos §>0. Since log(1 — 7)< — ¢ for €0, 1), we have

< 2x1(2| 4| cos O cos 0, + r) cos 0,

E,(2)< - , zeC,. (15)
' Vil 2+ Zal?
Moreover, since log(1 —#)> — 1 — %, 1€[0, (14 6)""] for 6>0, we also have
1+ )| 2|’ x? cos? 0,
En(z)>—( + 0)| 44| x> cos (16)

45|Z+):n|4

for ze{zeC,: 0<1 —e,(2)<(1+8)'}. Let n = (d) = 20 4 2,/5(1 +9), 6>0. If
|4n]= (1 +n)r, zeC, and r = |z|, then

0<1—e,(2)<(1+0)7",

and thus

cosb,/3 140
E,(2)|<2xr——(—=+2——]. 17
e CRER) (17)

1l

By (3), >, |4n| "% converge. Thus G(z) is the quotient of convergent canonical

products. As a consequence, it is analytic in {zeC:z# — 1,, n=1,2,...}. To prove
(12)—~(14), write G(z) =TI;I1,, where II; contains the terms with |4,|<(1 + n)r,
r=|z|, n=n(d) =20+ 2+/(1 +9). Apply (15) to the factors in IT; and apply
(17) to those in IT,. Then, for x>0, we obtain

0
loglj<2x Y 2 <d(r) + Ax (18)
[Zn| < (14m)r [
and
loglal|<dxr 3 2%y, (19)
|2 > (140)r ||

where we have used the inequality |1,|>An in the last part of (18) and (19).
Therefore (12) holds.

In order to prove (13), we may use (19) again for IT,. For I1;, let N(r) denote the
number of 2, satisfying |1,|<r = |z|, then |[N(R) — N(r)|<A|R —r|+ A(R>r>1).
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We consider the following two cases for IT;: (i) ze{z =ree C(A,dy): O(A) +
26<|0] <3} and (i) ze{z=re?eC(A,dy):[0]<O(A)+2¢}, where 4e =
(5 —0O(A)). In case (i), let 6; = sin” ¢, then

|2+ T ? = 20| |61, 0<1 —en(z2)<(1+6))",
consequently
1
BN S MLk Lia] c05 0,
[Anl < (14-1)r |/Ln‘ 1 [Zn] < (14n)r |Z + /1 |

— Ax + xA(r).

This implies that (13) holds in this case. In case (ii), (2) and Stirling’s formula give
N

II

1

I

N
Jn— 2|2V NN — N()= (i) ,

In+ 2| <(4r)

Thus
log|IT;|>N(log N —log(A4x)) + xA(r) = xA(r) — Ax — A4,

where N = N((1 4+ #)r), r = |z| and in the last inequality, we use N(log N — loga)
> —ae! for a>0. Therefore (13) is proved. Eq. (14) can be proved by the same
method. [

Proof of Theorem 1. If the space M(A) is incomplete in C,, then there exists a
bounded linear functional T such that ||T|| = 1 and T'(e*) = 0 for A€ A. So by the
Riesz representation theorem, there exists a complex measure p satisfying

+ 0
= [ eVl =17
and
T(h) = / h(¢) du(t), heC,.
Therefore the function
=g [ edut
776 ) .,

is analytic in the open right half-plane C, and continuous in the closed right half-
plane C, = {z = x4 iy : x>0}, where G(z) is defined by (11). By Lemma 2, we
obtain

f ()] <exp{a’(x) — xA(|z]) + Ax},
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where
o’ (x) = sup{xt — a(t) : te R} (20)

is the Young transform [5] of the convex function o(x). We may assume, without
loss of generality, that «(0) = 0. As is known [5], «*(x) is a convex nonnegative
function which also satisfies «*(0) =0 and («*)" =a. Since o*(x)>xr— a(x)
for x>0,7>0 and o*(x)>|x||t] — a(x) for x<0,7<0, so (1) is also satisfied. Hence
for >0,

sup{xt — o*(x) : x=0} = a(1).

Since the condition d(A) > 0 implies that (8) holds, we see from Lemma | with § = o*
that (4) holds. This completes the proof of necessity of Theorem 1.

Next, we turn to the proof of sufficiency of Theorem 1. Assume that there exists a
real number a such that the integral

8 [T a(i(t) —a)

Let ¢(¢) be an even function such that ¢(¢) = a(A(t) — a) for =0 and let u(z) be the
Poisson integral of ¢(7), i.e.,

u(x +iy) :%/_:%dt.

Then u(x + iy) is harmonic in the half-plane C_ and there exists an analytic function
g1(z) on C, satisfying

Aix=Regi(z) =du(z)=(x— 1)(A(r) —a) —a*(x — 1),
where z = x + iy, r=|z|,x>1. Let

%exp{—gl(z) — Nz — N},

where N is a large positive integer and G(z) is defined by (11). By (12), we have

go(z) =

lg0(2)| <——expfat(x— 1) — x}, zeCi. (22)
1+ ||
Let
1 “+ o0 )
(1) = = / 1+ e dy, (23)

Then hy(?) is continuous on (— oo, +0o0). By Cauchy’s formula,

l + o0 )
ho(t) = E/ go(x + iy)e’<x+’y)’ dy, x>0. (24)
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We obtain from (22), (24) and the formula of the Young transform («*)" = « that

|ho(1)| <exp(—a(t) — |1]) (25)
and
g0 (2) :V%ﬁ [ j ho(t)e di, x>0. (26)

Therefore the bounded linear functional

1 + o0
T == [ (kO heC, (27)

satisfies T'(e*') = 0 for Ae A, and

1 + oo
T||=— ho(t)|e*dt > 0.
1711 =—= | 1mto)

By the Riesz representation theorem, the space M(A) is incomplete in C,. This
completes the proof of Theorem 1. [J

Proof of Theorem 2. If M(A) is incomplete in C,, then it follows from Theorem 1
that there exists a real number a such that (21) holds. The proof of necessity of
Theorem 1 implies that there exist an analytic function go(z) on C, and a continuous
function /%y(¢) on R such that gy and /g satisfy (22)—(27).

Let ¢,(2) = (z = 7)) ' 90(2), @, (An) = gh(Z), n=1,2, ..., and let
1 + 0 )
I (t :—/ (1 diy)e” 1) gy
(1) N ¢,(1+1iy) ly

By a proof similar to that of necessity of Theorem 1, we get that 4,(¢) is continuous
on R, and satisfies

|l (0)] <exp(—a() — [1]), (28)
and that dual relation

1 “+ o0 -
(1) :\/—2_n/ ou(x + )y (x>0)

and

+o
0, (2) = JLZE /_ (e (x>0

holds. Note that 0<Re g,(z) < A4,x for x>1. We obtain, by (14),
|0, (An)| =exp{Re 4,A(|24|) — ARe A, — A}, n=1.2,....

By (28), there exists a constant 4, independent of A such that the function

L
l/jn([) - \/ﬂ(pn(}vn)
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satisfies
W, (1)e*V | <exp{A, + As Re 4, — Re 1,A(2,) — |1]}, (29)
and
T 1 if k=n
At ’
He*'dt = 30
—w Valt)e {0 otherwise. (30)

Define a linear functional 7,, on M(A) by

+ 00
T,(P) = a, :/ > arp, (e dr

for each exponential polynomial P(¢) = Y are’s' e M(A). By (29) and (30),
| T (P)|<2||P||, exp{A4> + A2 Re 4, — Re 1,A(|2a]) }
Hence T, is a bounded linear functional on M(A) and may be extended to a
bounded linear functional (denoted by 7}) on C, by the Hahn-Banach theorem with
|| Ta]| = || Tnl| < Cy = 2 exp{A4s + A3 Re A, — Re 1, A(|2n]) }- (31)

If f belongs to the closure of M(A) in C,, then there exists a sequence of exponential
polynomials

k
Pi(t) = Z ani €xp(Ant) € M(A)

n=1
such that

IIf — Prl||,—0 as k—c0.

Since A(r) is unbounded on (0, o0), by (30), the function

g(z) = Z ay exp(Anz)
n=1

is an entire function, where a, = T,(f), n=1,2, ... . Note that

lan — awe| = | To(f) = Tu(POI<Callf = Prell,, n=1,2,....

We obtain that, for xe R,

[ (x) = g()< I (x) = Pr(x)] + | Pr(x) — g ()]
k 0

< ea(X)Hf_PkHaJ’_Z |ank _an|eRe).,,x+ Z |a”|eRei”x-
n=1 n=k+1
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Letting k— oo, we obtain that f(x) = g(x) for xeR. This completes the proof of
Theorem 2. [
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