Incompleteness and closure of a linear span of exponential system in a weighted Banach space ${ }^{\boldsymbol{T}}$

G.T. Deng
Department of Mathematics, Beijing Normal University, 100875 Beijing, People's Republic of China

Received 15 May 2003; accepted in revised form 16 September 2003
Communicated by Peter B. Borwein

Abstract

In this paper, we obtain a necessary and sufficient condition for the incompleteness of complex exponential polynomials in C_{α}, where C_{α} is a weighted Banach space of complex continuous functions f on the real axis \mathbb{R} with $f(t) \exp (-\alpha(t))$ vanishing at infinity, in the uniform norm with respect to the weight $\alpha(t)$. We also prove that, if the above condition of incompleteness holds, then each function in the closure of complex exponential polynomials can be extended to an entire function represented by a Dirichlet series.

(C) 2003 Published by Elsevier Inc.

MSC: 30E05; 41A30
Keywords: Incompleteness; Closure; Exponential polynomials

1. Introduction

In the study of weighted approximation on the real line \mathbb{R}, we start with a nonnegative continuous function $\alpha(t)$, henceforth called a weight, defined on \mathbb{R}. We usually suppose that

$$
\begin{equation*}
\lim _{|t| \rightarrow \infty}|t|^{-1} \alpha(t)=\infty . \tag{1}
\end{equation*}
$$

[^0]Given a weight $\alpha(t)$, we take a weighted Banach space C_{α} consisting of complex continuous functions $f(t)$ defined on \mathbb{R} with $f(t) \exp (-\alpha(t))$ vanishing at infinity, and write

$$
\|f\|_{\alpha}=\sup \left\{\left|f(t) e^{-\alpha(t)}\right|: t \in \mathbb{R}\right\}
$$

for $f \in C_{\alpha}$. Denote by $M(\Lambda)$ the set of complex exponential polynomials which are finite linear combinations of the exponential system $\left\{e^{\lambda t}: \lambda \in \Lambda\right\}$, where $\Lambda=\left\{\lambda_{n}: n=1,2, \ldots\right\}$ is a sequence of complex numbers in the open right half-plane $\mathbb{C}_{+}=\{z=x+i y: x>0\}$. Our condition (1) guarantees that $M(\Lambda)$ is a subspace of C_{α}, we then ask whether $M(\Lambda)$ is incomplete [6] in C_{α} in the norm $\left\|\|_{\alpha}\right.$-this is the so-called weighted exponential polynomial approximation, which is similar to the classical Bernstein problem on weighted polynomial approximation [3].

Motivated by Bernstein's problem and Malliavin's Method [3], we find a necessary and sufficient condition for $M(\Lambda)$ to be incomplete in C_{α}. Inspired by Borwein's and Erdélyi's results [2, p. 311], we also prove that, if the above condition of incompleteness holds, then the closure of $M(\Lambda)$ in C_{α} is the set of all $f \in C_{\alpha}$ which can be extended to an entire function represented by a Dirichlet series.

Our main conclusions are as follows:
Theorem 1. Let $\alpha(t)$ be a nonnegative convex function on \mathbb{R} satisfying (1). Let $\Lambda=\left\{\lambda_{n}=\left|\lambda_{n}\right| e^{i \theta_{n}}: n=1,2, \ldots\right\}$ be a sequence of complex numbers in \mathbb{C}_{+} satisfying

$$
\begin{equation*}
\Theta(\Lambda)=\sup \left\{\left|\theta_{n}\right|: n=1,2, \ldots\right\}<\frac{\pi}{2} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta(\Lambda)=\inf \left\{\left|\lambda_{n+1}\right|-\left|\lambda_{n}\right|: n=1,2, \ldots\right\}>0 . \tag{3}
\end{equation*}
$$

Then $M(\Lambda)$ is incomplete in C_{α} if and only if there exists $a \in \mathbb{R}$ such that

$$
\begin{equation*}
\int_{1}^{+\infty} \frac{\alpha(\lambda(t)-a)}{1+t^{2}} d t<\infty \tag{4}
\end{equation*}
$$

where

$$
\lambda(r)= \begin{cases}2 \sum_{\left|\lambda_{n}\right| \leqslant r} \frac{\cos \theta_{n}}{\left|\lambda_{n}\right|} & \text { if } r \geqslant\left|\lambda_{1}\right|, \tag{5}\\ 0 & \text { otherwise }\end{cases}
$$

Theorem 2. Let $\alpha(x)$ be a nonnegative convex function on \mathbb{R} satisfying (1). Let Λ be a sequence of complex numbers in \mathbb{C}_{+}satisfying (2) and (3). Suppose that $\lambda(r)$ is unbounded on $(0, \infty)$, where $\lambda(r)$ is defined by (5). If $M(\Lambda)$ is incomplete in C_{α}, then each function f in the closure of $M(\Lambda)$ can be extended to an entire function $g(z)$
represented by a Dirichlet series

$$
\begin{equation*}
g(z)=\sum_{n=1}^{\infty} a_{n} e^{\lambda_{n} z} \tag{6}
\end{equation*}
$$

Remark 1. The case $\Theta(\Lambda)=0$ and $\delta(\Lambda)>0$ in Theorem 1 is obtained by Malliavin [4].

Borwein and Erdélyi [2] have proved a similar result to Theorem 2 for the closure of Müntz polynomials on a finite interval when $\Theta(\Lambda)=0, \delta(\Lambda)>0$ and $\lambda(r)$ is bounded on $(0, \infty)$. Thus Theorem 2 is a further generalization of some results in [2].

2. Proof of theorems

In order to prove Theorems 1 and 2, we need the following technical lemmas.
Lemma 1 (Malliavin [4]). Let $\beta(t)$ be a nonnegative convex function on \mathbb{R} satisfying (1), and assume that

$$
\begin{equation*}
\beta^{*}(t)=\sup \{x t-\beta(x): x \in \mathbb{R}\}, \quad t \in \mathbb{R} \tag{7}
\end{equation*}
$$

is the Young transform [6] of the function $\beta(x)$. Suppose that $\lambda(r)$ is an increasing function on $[0, \infty)$ satisfying

$$
\begin{equation*}
\lambda(R)-\lambda(r) \leqslant A(\log R-\log r+1)(R>r>1) . \tag{8}
\end{equation*}
$$

Then there exists an analytic function $f(z) \not \equiv 0$ in \mathbb{C}_{+}satisfying

$$
\begin{equation*}
|f(z)| \leqslant A \exp \{A x+\beta(x)-x \lambda(|z|)\}, \quad z=x+i y \in \mathbb{C}_{+}, \tag{9}
\end{equation*}
$$

if and only if there exists $a \in \mathbb{R}$ such that

$$
\begin{equation*}
\int_{1}^{+\infty} \frac{\beta^{*}(k(t)-a)}{1+t^{2}} d t<\infty \tag{10}
\end{equation*}
$$

Remark 2. Lemma 1 is a result of Malliavin's uniqueness theorem [4] about Watson's problem. (Hereafter, we denote a positive constant by A, not necessarily the same at each occurrence.)

Lemma 2. If Λ is a sequence of complex numbers in \mathbb{C}_{+}satisfying (2) and (3), then the function

$$
\begin{equation*}
G(z)=\prod_{n=1}^{\infty}\left(\frac{1-\frac{z}{\lambda_{n}}}{1+\frac{z}{\bar{\lambda}_{n}}}\right) \exp \left(\frac{z}{\lambda_{n}}+\frac{z}{\bar{\lambda}_{n}}\right) . \tag{11}
\end{equation*}
$$

is analytic in the closed right half-plane $\overline{\mathbb{C}}_{+}=\{z=x+i y: x \geqslant 0\}$, and satisfies the following inequalities:

$$
\begin{equation*}
|G(z)| \leqslant \exp \{x \lambda(r)+A x\}, \quad z \in \mathbb{C}_{+}, \tag{12}
\end{equation*}
$$

$$
\begin{align*}
& |G(z)| \geqslant \exp \{x \lambda(r)-A x\}, \quad z \in C\left(\Lambda, \delta_{0}\right), \tag{13}\\
& \left|G^{\prime}\left(\lambda_{n}\right)\right| \geqslant \exp \left\{\operatorname{Re} \lambda_{n} \lambda\left(\left|\lambda_{n}\right|\right)-A \operatorname{Re} \lambda_{n}\right\}, \quad n=1,2, \ldots, \tag{14}
\end{align*}
$$

where $r=|z|, 4 \delta_{0}=\delta(\Lambda)$ and $C\left(\Lambda, \delta_{0}\right)=\left\{z \in \mathbb{C}_{+}:\left|z-\lambda_{n}\right| \geqslant \delta_{0}, n=1,2, \ldots\right\}$.
Proof of Lemma 2. We will use a similar method to that of the proof of Fuch's lemma in [1]. Let

$$
e_{n}(z)=\left|\frac{z-\lambda_{n}}{z+\bar{\lambda}_{n}}\right|^{2}=1-\frac{4 x\left|\lambda_{n}\right| \cos \theta_{n}}{\left|z+\bar{\lambda}_{n}\right|^{2}}, \quad E_{n}(z)=2 x \frac{\cos \theta_{n}}{\left|\lambda_{n}\right|}+\frac{1}{2} \log e_{n}(z)
$$

where $x=r \cos \theta>0$. Since $\log (1-t) \leqslant-t$ for $t \in[0,1)$, we have

$$
\begin{equation*}
E_{n}(z) \leqslant \frac{2 x r\left(2\left|\lambda_{n}\right| \cos \theta \cos \theta_{n}+r\right) \cos \theta_{n}}{\left|\lambda_{n}\right|\left|z+\bar{\lambda}_{n}\right|^{2}}, \quad z \in \mathbb{C}_{+} \tag{15}
\end{equation*}
$$

Moreover, since $\log (1-t) \geqslant-t-\frac{\delta t^{2}}{1+\delta}, t \in\left[0,(1+\delta)^{-1}\right]$ for $\delta>0$, we also have

$$
\begin{equation*}
E_{n}(z) \geqslant-\frac{(1+\delta)\left|\lambda_{n}\right|^{2} x^{2} \cos ^{2} \theta_{n}}{4 \delta\left|z+\bar{\lambda}_{n}\right|^{4}} \tag{16}
\end{equation*}
$$

for $z \in\left\{z \in \mathbb{C}_{+}: 0 \leqslant 1-e_{n}(z) \leqslant(1+\delta)^{-1}\right\}$. Let $\eta=\eta(\delta)=2 \delta+2 \sqrt{\delta(1+\delta)}, \delta>0$. If $\left|\lambda_{n}\right| \geqslant(1+\eta) r, \quad z \in \mathbb{C}_{+}$and $r=|z|$, then

$$
0 \leqslant 1-e_{n}(z) \leqslant(1+\delta)^{-1}
$$

and thus

$$
\begin{equation*}
\left|E_{n}(z)\right| \leqslant 2 x r \frac{\cos \theta_{n}}{\left|\lambda_{n}\right|^{2}}\left(\frac{3}{\eta^{4}}+2 \frac{1+\delta}{\eta^{6} \delta}\right) . \tag{17}
\end{equation*}
$$

By (3), $\sum_{n=1}^{\infty}\left|\lambda_{n}\right|^{-2}$ converge. Thus $G(z)$ is the quotient of convergent canonical products. As a consequence, it is analytic in $\left\{z \in \mathbb{C}: z \neq-\bar{\lambda}_{n}, n=1,2, \ldots\right\}$. To prove (12)-(14), write $G(z)=\Pi_{1} \Pi_{2}$, where Π_{1} contains the terms with $\left|\lambda_{n}\right| \leqslant(1+\eta) r$, $r=|z|, \eta=\eta(\delta)=2 \delta+2 \sqrt{\delta(1+\delta)}$. Apply (15) to the factors in Π_{1} and apply (17) to those in Π_{2}. Then, for $x \geqslant 0$, we obtain

$$
\begin{equation*}
\log \left|\Pi_{1}\right| \leqslant 2 x \sum_{\left|\lambda_{n}\right| \leqslant(1+\eta) r} \frac{\cos \theta_{n}}{\left|\lambda_{n}\right|} \leqslant x \lambda(r)+A x \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
|\log | \Pi_{2}| | \leqslant A x r \sum_{\left|\lambda_{n}\right|>(1+\eta) r} \frac{\cos \theta_{n}}{\left|\lambda_{n}\right|^{2}} \leqslant A x \tag{19}
\end{equation*}
$$

where we have used the inequality $\left|\lambda_{n}\right| \geqslant A n$ in the last part of (18) and (19). Therefore (12) holds.

In order to prove (13), we may use (19) again for Π_{2}. For Π_{1}, let $N(r)$ denote the number of λ_{n} satisfying $\left|\lambda_{n}\right| \leqslant r=|z|$, then $|N(R)-N(r)| \leqslant A|R-r|+A(R>r>1)$.

We consider the following two cases for $\Pi_{1}:(\mathrm{i}) z \in\left\{z=r e^{i \theta} \in C\left(\Lambda, \delta_{0}\right): \Theta(\Lambda)+\right.$ $\left.2 \varepsilon_{1} \leqslant|\theta|<\frac{\pi}{2}\right\} \quad$ and \quad (ii) $\quad z \in\left\{z=r e^{i \theta} \in C\left(\Lambda, \delta_{0}\right):|\theta|<\Theta(\Lambda)+2 \varepsilon_{1}\right\}$, where $4 \varepsilon_{1}=$ $\left(\frac{\pi}{2}-\Theta(\Lambda)\right)$. In case (i), let $\delta_{1}=\sin ^{2} \varepsilon_{1}$, then

$$
\left|z+\bar{\lambda}_{n}\right|^{2} \geqslant 2 r\left|\lambda_{n}\right| \delta_{1}, \quad 0<1-e_{n}(z) \leqslant\left(1+\delta_{1}\right)^{-1},
$$

consequently

$$
\begin{aligned}
\log \left|\Pi_{1}\right| & \geqslant 2 x \sum_{\left|\lambda_{n}\right| \leqslant(1+\eta) r} \frac{\cos \theta_{n}}{\left|\lambda_{n}\right|}-2 x \frac{1+\delta_{1}}{\delta_{1}} \sum_{\left|\lambda_{n}\right| \leqslant(1+\eta) r} \frac{\left|\lambda_{n}\right| \cos \theta_{n}}{\left|z+\bar{\lambda}_{n}\right|^{2}} \\
& \geqslant-A x+x \lambda(r) .
\end{aligned}
$$

This implies that (13) holds in this case. In case (ii), (2) and Stirling's formula give

$$
\begin{aligned}
& \prod_{1}^{N}\left|\lambda_{n}-z\right| \geqslant \delta_{0}^{N} N(r)!(N-N(r))!\geqslant\left(\frac{N}{A}\right)^{N} \\
& \prod_{1}^{N}\left|\lambda_{n}+z\right| \leqslant(A r)^{N}
\end{aligned}
$$

Thus

$$
\log \left|\Pi_{1}\right| \geqslant N(\log N-\log (A x))+x \lambda(r) \geqslant x \lambda(r)-A x-A,
$$

where $N=N((1+\eta) r), r=|z|$ and in the last inequality, we use $N(\log N-\log a)$ $\geqslant-a e^{-1}$ for $a>0$. Therefore (13) is proved. Eq. (14) can be proved by the same method.

Proof of Theorem 1. If the space $M(\Lambda)$ is incomplete in C_{α}, then there exists a bounded linear functional T such that $\|T\|=1$ and $T\left(e^{\lambda t}\right)=0$ for $\lambda \in \Lambda$. So by the Riesz representation theorem, there exists a complex measure μ satisfying

$$
\|\mu\|=\int_{-\infty}^{+\infty} e^{\alpha(t)} d|\mu(t)|=\|T\|
$$

and

$$
T(h)=\int_{-\infty}^{+\infty} h(t) d \mu(t), \quad h \in C_{\alpha} .
$$

Therefore the function

$$
f(z)=\frac{1}{G(z)} \int_{-\infty}^{+\infty} e^{t z} d \mu(t)
$$

is analytic in the open right half-plane \mathbb{C}_{+}and continuous in the closed right halfplane $\overline{\mathbb{C}}_{+}=\{z=x+i y: x \geqslant 0\}$, where $G(z)$ is defined by (11). By Lemma 2, we obtain

$$
|f(z)| \leqslant \exp \left\{\alpha^{*}(x)-x \lambda(|z|)+A x\right\}
$$

where

$$
\begin{equation*}
\alpha^{*}(x)=\sup \{x t-\alpha(t): t \in \mathbb{R}\} \tag{20}
\end{equation*}
$$

is the Young transform [5] of the convex function $\alpha(x)$. We may assume, without loss of generality, that $\alpha(0)=0$. As is known [5], $\alpha^{*}(x)$ is a convex nonnegative function which also satisfies $\alpha^{*}(0)=0$ and $\left(\alpha^{*}\right)^{*}=\alpha$. Since $\alpha^{*}(x) \geqslant x t-\alpha(x)$ for $x>0, t>0$ and $\alpha^{*}(x) \geqslant|x||t|-\alpha(x)$ for $x<0, t<0$, so (1) is also satisfied. Hence for $t>0$,

$$
\sup \left\{x t-\alpha^{*}(x): x \geqslant 0\right\}=\alpha(t)
$$

Since the condition $\delta(\Lambda)>0$ implies that (8) holds, we see from Lemma 1 with $\beta=\alpha^{*}$ that (4) holds. This completes the proof of necessity of Theorem 1.

Next, we turn to the proof of sufficiency of Theorem 1. Assume that there exists a real number a such that the integral

$$
\begin{equation*}
A_{1}=\frac{8}{\pi} \int_{0}^{\infty} \frac{\alpha(\lambda(t)-a)}{1+t^{2}} d t<\infty \tag{21}
\end{equation*}
$$

Let $\varphi(t)$ be an even function such that $\varphi(t)=\alpha(\lambda(t)-a)$ for $t \geqslant 0$ and let $u(z)$ be the Poisson integral of $\varphi(t)$, i.e.,

$$
u(x+i y)=\frac{x}{\pi} \int_{-\infty}^{+\infty} \frac{\varphi(t)}{x^{2}+(y-t)^{2}} d t
$$

Then $u(x+i y)$ is harmonic in the half-plane \mathbb{C}_{+}and there exists an analytic function $g_{1}(z)$ on \mathbb{C}_{+}satisfying

$$
A_{1} x \geqslant \operatorname{Re} g_{1}(z)=4 u(z) \geqslant(x-1)(\lambda(r)-a)-\alpha^{*}(x-1),
$$

where $z=x+i y, r=|z|, x>1$. Let

$$
g_{0}(z)=\frac{G(z)}{(1+z)^{N}} \exp \left\{-g_{1}(z)-N z-N\right\}
$$

where N is a large positive integer and $G(z)$ is defined by (11). By (12), we have

$$
\begin{equation*}
\left|g_{0}(z)\right| \leqslant \frac{1}{1+|z|^{2}} \exp \left\{\alpha^{*}(x-1)-x\right\}, \quad z \in \mathbb{C}_{+} \tag{22}
\end{equation*}
$$

Let

$$
\begin{equation*}
h_{0}(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} g_{0}(1+i y) e^{-(1+i y) t} d y \tag{23}
\end{equation*}
$$

Then $h_{0}(t)$ is continuous on $(-\infty,+\infty)$. By Cauchy's formula,

$$
\begin{equation*}
h_{0}(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} g_{0}(x+i y) e^{-(x+i y) t} d y, \quad x>0 \tag{24}
\end{equation*}
$$

We obtain from (22), (24) and the formula of the Young transform $\left(\alpha^{*}\right)^{*}=\alpha$ that

$$
\begin{equation*}
\left|h_{0}(t)\right| \leqslant \exp (-\alpha(t)-|t|) \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{0}(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} h_{0}(t) e^{t z} d t, \quad x>0 \tag{26}
\end{equation*}
$$

Therefore the bounded linear functional

$$
\begin{equation*}
T(h)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} h_{0}(t) h(t) d t, \quad h \in C_{\alpha}, \tag{27}
\end{equation*}
$$

satisfies $T\left(e^{\lambda t}\right)=0$ for $\lambda \in \Lambda$, and

$$
\|T\|=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty}\left|h_{0}(t)\right| e^{\alpha(t)} d t>0
$$

By the Riesz representation theorem, the space $M(\Lambda)$ is incomplete in C_{α}. This completes the proof of Theorem 1.

Proof of Theorem 2. If $M(\Lambda)$ is incomplete in C_{α}, then it follows from Theorem 1 that there exists a real number a such that (21) holds. The proof of necessity of Theorem 1 implies that there exist an analytic function $g_{0}(z)$ on \mathbb{C}_{+}and a continuous function $h_{0}(t)$ on \mathbb{R} such that g_{0} and h_{0} satisfy (22)-(27).

Let $\varphi_{n}(z)=\left(z-\lambda_{n}\right)^{-1} g_{0}(z), \varphi_{n}\left(\lambda_{n}\right)=g_{0}^{\prime}\left(\lambda_{n}\right), n=1,2, \ldots$, and let

$$
h_{n}(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \varphi_{n}(1+i y) e^{-(1+i y) t} d y
$$

By a proof similar to that of necessity of Theorem 1, we get that $h_{n}(t)$ is continuous on \mathbb{R}, and satisfies

$$
\begin{equation*}
\left|h_{n}(t)\right| \leqslant \exp (-\alpha(t)-|t|), \tag{28}
\end{equation*}
$$

and that dual relation

$$
h_{n}(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \varphi_{n}(x+i y) e^{-(x+i y) t} d y \quad(x>0)
$$

and

$$
\varphi_{n}(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} h_{n}(t) e^{t z} d t \quad(x>0)
$$

holds. Note that $0 \leqslant \operatorname{Re} g_{1}(z) \leqslant A_{1} x$ for $x \geqslant 1$. We obtain, by (14),

$$
\left|\varphi_{n}\left(\lambda_{n}\right)\right| \geqslant \exp \left\{\operatorname{Re} \lambda_{n} \lambda\left(\left|\lambda_{n}\right|\right)-A \operatorname{Re} \lambda_{n}-A\right\}, \quad n=1,2, \ldots
$$

By (28), there exists a constant A_{2} independent of Λ such that the function

$$
\psi_{n}(t)=\frac{1}{\sqrt{2 \pi}} \frac{h_{n}(t)}{\varphi_{n}\left(\lambda_{n}\right)}
$$

satisfies

$$
\begin{equation*}
\left|\psi_{n}(t) e^{\alpha(t)}\right| \leqslant \exp \left\{A_{2}+A_{2} \operatorname{Re} \lambda_{n}-\operatorname{Re} \lambda_{n} \lambda\left(\lambda_{n}\right)-|t|\right\}, \tag{29}
\end{equation*}
$$

and

$$
\int_{-\infty}^{+\infty} \psi_{n}(t) e^{\lambda_{k} t} d t= \begin{cases}1 & \text { if } k=n \tag{30}\\ 0 & \text { otherwise }\end{cases}
$$

Define a linear functional T_{n} on $M(\Lambda)$ by

$$
T_{n}(P)=a_{n}=\int_{-\infty}^{+\infty} \sum a_{k} \psi_{n}(t) e^{\lambda_{k} t} d t
$$

for each exponential polynomial $P(t)=\sum a_{k} e^{\lambda_{k} t} \in M(\Lambda)$. By (29) and (30),

$$
\left|T_{n}(P)\right| \leqslant 2\|P\|_{\alpha} \exp \left\{A_{2}+A_{2} \operatorname{Re} \lambda_{n}-\operatorname{Re} \lambda_{n} \lambda\left(\left|\lambda_{n}\right|\right)\right\} .
$$

Hence T_{n} is a bounded linear functional on $M(\Lambda)$ and may be extended to a bounded linear functional (denoted by \bar{T}_{n}) on C_{α} by the Hahn-Banach theorem with

$$
\begin{equation*}
\left\|\bar{T}_{n}\right\|=\left\|T_{n}\right\| \leqslant C_{n}=2 \exp \left\{A_{2}+A_{2} \operatorname{Re} \lambda_{n}-\operatorname{Re} \lambda_{n} \lambda\left(\left|\lambda_{n}\right|\right)\right\} \tag{31}
\end{equation*}
$$

If f belongs to the closure of $M(\Lambda)$ in C_{α}, then there exists a sequence of exponential polynomials

$$
P_{k}(t)=\sum_{n=1}^{k} a_{n k} \exp \left(\lambda_{n} t\right) \in M(\Lambda)
$$

such that

$$
\left\|f-P_{k}\right\|_{\alpha} \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

Since $\lambda(r)$ is unbounded on $(0, \infty)$, by (30), the function

$$
g(z)=\sum_{n=1}^{\infty} a_{n} \exp \left(\lambda_{n} z\right)
$$

is an entire function, where $a_{n}=\bar{T}_{n}(f), n=1,2, \ldots$. Note that

$$
\left|a_{n}-a_{n k}\right|=\left|\bar{T}_{n}(f)-\bar{T}_{n}\left(P_{k}\right)\right| \leqslant C_{n}| | f-P_{k} \|_{\alpha}, \quad n=1,2, \ldots .
$$

We obtain that, for $x \in \mathbb{R}$,

$$
\begin{aligned}
|f(x)-g(x)| & \leqslant\left|f(x)-P_{k}(x)\right|+\left|P_{k}(x)-g(x)\right| \\
& \leqslant e^{\alpha(x)}| | f-P_{k} \|_{\alpha}+\sum_{n=1}^{k}\left|a_{n k}-a_{n}\right| e^{\operatorname{Re} \lambda_{n} x}+\sum_{n=k+1}^{\infty}\left|a_{n}\right| e^{\operatorname{Re} \lambda_{n} x} .
\end{aligned}
$$

Letting $k \rightarrow \infty$, we obtain that $f(x)=g(x)$ for $x \in \mathbb{R}$. This completes the proof of Theorem 2.

Acknowledgments

The author thanks the referee for his useful comments and suggestions in order to provide a more convenient presentation of the manuscript.

References

[1] R.P. Boas Jr., Entire Functions, Academic Press, New York, 1954.
[2] P.B. Borwein, T. Erdélyi, Polynomials and Polynomial Inequalities, Springer, New York, NY, 1995.
[3] P. Koosis, The Logarithmic Integral, Vol. I, Cambridge University Press, Cambridge, 1988.
[4] P. Malliavin, Sur quelques procédés d'extrapolation, Acta Math. 83 (1955) 179-255.
[5] R. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.
[6] R.M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 1980.

[^0]: ${ }^{2}$ The project supported by NSFC (Grant 10071005) and by SRF for ROCS.SEM.
 E-mail address: denggt@bnu.edu.cn.

